Phenology

Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia

Frost in late spring causes severe ecosystem damage in temperate and boreal regions. We here analyze late-spring frost occurrences between 1959 and 2017 and woody species’ resistance strategies to forecast forest vulnerability under climate change. Leaf-out phenology and leaf-freezing resistance data come from up to 1,500 species cultivated in common gardens. The greatest increase in leaf-damaging spring frost has occurred in Europe and East Asia, where species are more vulnerable to spring frost than in North America. The data imply that 35 and 26% of Europe’s and Asia’s forests are increasingly threatened by frost damage, while this is only true for 10% of North America. Phenological strategies that helped trees tolerate past frost frequencies will thus be increasingly mismatched to future conditions.

Spring predictability explains different leaf‐out strategies in the woody floras of North America, Europe and East Asia

Intuitively, interannual spring temperature variability (STV) should influence the leaf‐out strategies of temperate zone woody species, with high winter chilling requirements in species from regions where spring warming varies greatly among years. We tested this hypothesis using experiments in 215 species and leaf‐out monitoring in 1585 species from East Asia (EA), Europe (EU) and North America (NA). The results reveal that species from regions with high STV indeed have higher winter chilling requirements, and, when grown under the same conditions, leaf out later than related species from regions with lower STV. Since 1900, STV has been consistently higher in NA than in EU and EA, and under experimentally short winter conditions NA species required 84% more spring warming for bud break, EU ones 49% and EA ones only 1%. These previously unknown continental‐scale differences in phenological strategies underscore the need for considering regional climate histories in global change models.

Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants

Our results do not support previous ideas about phenological strategies in temperate woody species (the ‘high temperature variability’ hypothesis; the ‘oceanic climate’ hypothesis; the ‘high latitude’ hypothesis). In regions with long winters, trees appear to rely on cues other than day length, such as winter chilling and spring warming. By contrast, in regions with short winters, some species—mostly from lineages with a warm-temperate or subtropical background, for example, Fagus additionally rely on photoperiodism. Therefore, photoperiod may be expected to constrain climate-driven shifts in spring leaf unfolding only at lower latitudes.