Fairy circles (FCs) are intriguing regular vegetation patterns that have only been described in Namibia and Australia so far. We conducted a global and systematic assessment of FC-like vegetation patterns and discovered hundreds of FC-like locations on three continents. We also characterized the range of environmental conditions that determine their presence, which is restricted to narrow and specific soil and climatic conditions. Areas showing FC-like vegetation patterns also had more stable productivity over time than surrounding areas having non-FC patterns. Our study provides insights into the ecology and biogeography of these fascinating vegetation patterns and the first atlas of their global distribution.
Drylands cover ~41% of the terrestrial surface. In these water-limited ecosystems, soil moisture contributes to multiple hydrological processes and is a crucial determinant of the activity and performance of above- and belowground organisms and of the ecosystem processes that rely on them. Thus, an accurate characterisation of the temporal dynamics of soil moisture is critical to improve our understanding of how dryland ecosystems function and are responding to ongoing climate change. Furthermore, it may help improve climatic forecasts and drought monitoring. Here we present the MOISCRUST dataset, a long-term (2006–2020) soil moisture dataset at a sub-daily resolution from five different microsites (vascular plants and biocrusts) in a Mediterranean semiarid dryland located in Central Spain. MOISCRUST is a unique dataset for improving our understanding on how both vascular plants and biocrusts determine soil water dynamics in drylands, and thus to better assess their hydrological impacts and responses to ongoing climate change.
Here we synthesize the biogeography of key organisms (vascular and non‐vascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant‐plant and plant‐soil interactions) and processes (productivity and land cover) across global drylands. We finish our review discussing major research gaps, which include: i) studying regular vegetation spatial patterns, ii) establishing large‐scale plant and biocrust field surveys assessing individual‐level trait measurements, iii) knowing whether plant‐plant and plant‐soil interactions impacts on biodiversity are predictable and iv) assessing how elevated CO2 modulates future aridity conditions and plant productivity.
Understanding the ecology of populations located in the rear edge of their distribution is key to assessing the response of the species to changing environmental conditions. Here, we focus on rear-edge populations of Quercus pyrenaica in Sierra Nevada (southern Iberian Peninsula) to analyze their ecological and floristic diversity. We perform multivariate analyses using high-resolution environmental information and forest inventories to determine how environmental variables differ among oak populations, and to identify population groups based on environmental and floristic composition.
Frost in late spring causes severe ecosystem damage in temperate and boreal regions. We here analyze late-spring frost occurrences between 1959 and 2017 and woody species’ resistance strategies to forecast forest vulnerability under climate change. Leaf-out phenology and leaf-freezing resistance data come from up to 1,500 species cultivated in common gardens. The greatest increase in leaf-damaging spring frost has occurred in Europe and East Asia, where species are more vulnerable to spring frost than in North America. The data imply that 35 and 26% of Europe’s and Asia’s forests are increasingly threatened by frost damage, while this is only true for 10% of North America. Phenological strategies that helped trees tolerate past frost frequencies will thus be increasingly mismatched to future conditions.
In this paper we aim to (1) reconstruct the Holocene fire history at high altitudes of the southern Central Pyrenees, (2) add evidence to the debate on fire origin, naturally or anthropogenically produced, (3) determine the importance of fire as a disturbance agent for sub-alpine and alpine vegetation, in comparison with the plant community internal dynamics.
Paper published in the section "Editor's Choice" of the *Ecography* journal. It received [an award](https://www.dropbox.com/s/oacsy1xqx4omv1b/2019_BMB_Ecography_b_top_downloaded.png?dl=1) for the number of downloads during the 12 months after its publication.
We hypothesize that fire has influenced Erica communities in the Bale Mountains at millennial time-scales. To test this, we (1) identify the fire history of the Bale Mountains through a pollen and charcoal record from Garba Guracha, a lake at 3950 m.a.s.l., and (2) describe the long-term bidirectional feedback between wildfire and Erica, which may control the ecosystem's resilience.
The goals of this study are to provide a map of actual habitat suitability (1), describe the relationships between abiotic predictors and the saguaro distribution at regional extents (2), and describe the potential effect of climate change on the spatial distribution of the saguaro (3).
Our results show that phylogenetically diverse assemblages with large phylogenetic age differences among species are associated with relatively high long‐term climate stability, with intra‐regional links between long‐term climate variability and phylogenetic composition especially strong in the more unstable regions. These findings point to future climate change as a key risk to the preservation of the phylogenetically diverse assemblages in regions characterized by relatively high paleoclimate stability, with China as a key example.